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I. INTRODUCTION

In recent years, the cyclotron maser :I.nstabil:l.t:yl-9 has been

extensively investigated with particular emphasis on the implications

for intense microwave generation. For the most part, previous theoretical
analyses of this instability have been carried out for hollow electron
beams.G-9 The present paper examines the equilibrium and cyclotron

maser stability properties of a solid relativistic electron beam within
the framework of the linearized Vlasov-Maxwell equations, including a
determination of the optimum value of the beam radius RO for maximum
growth rate.

The present analysis is carried out for an infinitely long
electron beam propagating parallel to a uniform axial magnetic field
Boéz' Equilibrium and stability properties are calculated for the
specific choice of elsctron distribution function [Eq. (3)],

n

0 0 2 x
fe(H.Pe.Pz) m G(HL-Yomc )O(Pe—PO)G(Pz-Ysz) s

where H; is the perpendicular energy, P, is the canonical angular

8
momentum, Pz is the axial canonical momentum, €(x) is the Heaviside
step function, and Ny Yoo ;, Po. and Vz are constants. Equilibrium
properties are examined in Sec. II, and stability properties are
investigated in Secs. III and IV, assuming that v/;<<1. where v is
Budker's parameter.

Introducing the normalized Doppler-shifted eigenfrequency

Zs'(w—kV;SNC)/wc. the TE mode dispersion relation can be expressed

as [Eq. (31)].

3_2v FRPRNESE B tey
i [s/aong(aon)] (Q 2 -sv,ByH )=0 ,
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where Jz(x) is the Bessel function of the first kind of order £,

mc-eBO/;mc is the electron cyclotron frequency, k is the axial
wavenumber, w is the complex eigenfrequency, %on is the nth
root of Jl(aon)-o, Si-(yg-l)lyg, s=1,2,3,... denotes the magnetic
harmonic number, and Qs and Hs are coupling coefficients [Eq. (27)].
Equation (31) is valid when the group velocity of the vacuum waveguide
mode is approximately equal to the beam velocity. Evidently, for
given s, the maximum TE mode growth rate occurs at a value of RO/Rc
corresponding to RO/RC-GZI/aon. Here @5y is the first root of Jé(a21)-0.
This result is different from that obtained for a hollow electron
beam.s-9

A detailed numerical analysis of the TE mode [Eq. (21)] and TM mode
[Eq. (22)] dispersion relations is presented in Sec. IV for the case
where the electron gyroradius is much less than the beam radius, i.e.,
rL<<R0. Two features are noteworthy from the numerical analysis.
First, the system is completely stable to TM mode perturbations
when the group velocity of the vacuum waveguide mode is equal to the
bean velocity. This appears to be a property unique to the
equilibrium distribution function in Eq. (3), where all electrons have
the same axial velocity. Second, for TE mode perturbations, the maximum
growth rate for a solid beam is comparable to that of a hollow beam.
In this context, we conclude that solid relativistic electron beams

may also be effective in generating intense microwave radiation by the

cyclotron maser instability.




II. EQUILIBRIUM PROPERTIES AND BASIC ASSUMPTIONS

The equilibrium configuration is illustrated in Fig. 1. It
consists of an unneutralized electron beam that is infinite in axial
extent and propagates parallel to a uniform axial magnetic field
Boéz' The radius of the electron beam is denoted by RO' and a grounded
cylindrical conducting wall is located at radius r-Rc. The applied
magnetic field provides radial confinement of the electrons. As
shown in Fig. 1, we introduce a cylindrical polar coordinate system (r,8,z).
In the present analysis, we assume that the beam radius Ro is larger
than twice the thermal electron Larmor radius Tps i.e,, R.>2r. . Tt

0 "L

is also assumed that
v/y<<l (1)

where v-NeeZ/mc2 is Budker's parameter,

c

N =2m Jo dr r ng(r) (2)

is the number of electrons per unit axial length, ng(r) is the
equilibrium electron density, ¢ is the speed of light in vacuo, -e
and m are the electron charge and rest mass, respectively, and ;mc2
is the electron energy in the laboratory frame. The inequality in Eq.
(1) indicates that the beam is very tenuous, so that the perturbed
fields, to lowest order, can be approximated by the vacuum waveguide
fields.7 Consistent with the low-density assumption in Eq. (1), we
also neglect the influence of the (weak) equilibrium self-electric
and self-magnetic fields that are produced by the lack of

equilibrium charge and current neutralization.

For present purposes, we assume an equilibrium distribution function




M g

of the form,

0 n
fe(H,Pe,Pz)

8 (H,-y,me )o(p -Py)8(F -yaV ) , (3)

o -
ZwYOm
where ny=const. is the electron density at r=0, yomc2 is the electron

energy in a frame of reference moving with the mean axial velocity

Vzéz of the electron beam,
P --(e/2c)(R -r )B (4)

is the minimum canonical angular momentum of the electrons, and
1, x>0 ,
o(x) = (5)
(1 x<0 ,

is .the Heaviside step function. 1In Eq. (3),

H=ymc -(H2 2 2)1/2 (m c +c 32)1/2 (6)
is the total electron energy,
Pe-[rpe—(e/ZC)rBO] (7)

is the canonical angular momentum, and Pz-pz is the axial canonical
momentum, where lower case ) denotes mechanical momentum and the

equilibrium self fields have been neglected in comparison with the
applied magnetic field Bo.
Making use of Eqs. (3) and (4), and defining the effective

electron Larmor radius by

1/2 -

r .(Yo 1) C' (8)

where ;c-eBO/mc is the nonrelativistic electron cyclotron frequency,

it is straightforward to show that the electron density can be




expressed as

) RIS 0<x'<l?_0 =

0 1 1 2-R +r
ne(r:)-n0 758 ( ) : 1?.0-1:1‘<1:<Ro+1:'L - 9)

0 , otherwise ,

which is illustrated in Fig. 2. Substituting Eq. (9) into Eq. (2)

gives the number of electrons per unit axial length

2
N e-nnoko . (10)

Note from Eq. (9) that the parameter R0 introduced in Eq. (4) determines

the effective beam radius.
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III. LINEARIZED VLASOV-MAXWELL EQUATIONS FOR A TENUOUS BEAM

In this section, we make use of the linearized Vlasov-Maxwell
equations to investigate stability properties for azimuthally symmetric
perturbations (3/36=0) about a tenuous electron beam equilibrium
described by Eq. (3). We adopt a normal-mode approach in which all
perturbations are assumed to vary with time (t) and axial coordinate

(z) according to
Gw(g,t)=$(r)exp[i(kz—wt)] s

where Imw>0, w is the complex eigenfrequency, and k is the axial
wavenumber. Consistent with Eq. (1), it is also valid in lowest
order to approximate the perturbed fields by the vacuum waveguide fields?’8
Without loss of generality, we assume that the amplitudes of the perturbed

axial electric and magnetic fields are normalized according to ﬁz(r-O)-l

and ﬁz(r-o)-l. After some straightforward algebraic manipulation, we

obtain
2 R
2 a 8ma. /R ¢ c .
RO S ) SO i N dr r J.(a, r/R)J (r) (11)
c2 R2 R J.(a )]2 0 1"0n ""c¢’70
c ¢ 2 0n

for the transverse electric (TE) waveguide modes, and

2 82 Rc
o - k2 - 2l Srk dr r J.(B_ t/R)|p (r) - =5 J (1)
c2 R2 (R J. (8 )]2 0 0" 0n " c’|Fe kc2 z
c ¢ 1" 0n

(12)
for the transverse magnetic (TM) waveguide modes. [For a detailed
derivation of Eqs. (11) and (12), see Ref. 8]. 1In Eqs. (11) and (12),
Jz(x) is the Bessel function of first kind of order g, %0n and BOn

are the nth roots of Jl(uon)-o and Jo(son)-o, and the perturbed

charge and current densities are defined by

. P TSI




PR . . - , W

8
? b (r)--afd’ £ (r,p) (13)
! e Pe’gv
and
Q(r)=-eId3p X Ee(r,g) , (14)

where x-gﬂym). The perturbed distribution function in Eqs. (13) and
(14) is expressed as

0

£
Cc

VRED) 5
32' e

fe(r,g)-ef dr exp{i[(kp, /ym)-w]t} {@(r') +

=y
(15)
where t=t'-t, and the particle trajectories *'(t') and p'(t') satisfy
dﬁ'/dc'-x' and dB'/dt'-—ex'XBoéz/c, with initial conditions ﬁ'(t'-t)-é
and x’(t'-t)-x. In obtaining Eq. (15), use has been made of the axial

{ orbit

z'-z+(pz/Ym)(t'-t)

! . For present purposes it is assumed that
|2 [ =|w-kV_-su_|<<u (16)

: 1 where Qs=m-sz-smc is the Doppler-shifted frequency, mc-eBO/Ymc
is the electron cyclotron frequency in the laboratory frame, and s=1,2,3,...
denotes the magnetic harmonic number. To simplify the present analysis,

we also assume that

v/y <<(Bu R /)7, a7

1/2

where 81-(1-1/Y§) Equation (17) is easily satisfied in parameter

regimes of experimental interest.l-a Within the context of Eq. (17),
it is valid to neglect the terms proportional to afg/ape in Eq. (15),
since the corrections associated with these terms are order (w';)(c/BmeRO)2

(<<1) or smaller.

o . e a -
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The particle trajectories r'(t) and 8'(t) in the equilibrium fields

are required in order to evaluate the perturbed distribution function
in Eq. (15). The transverse (radial and azimuthal) motion of a typical
electron is illustrated in Fig. 3(a) for a positive value of canonical
angular momentum (Pe>0), and in Fig. 3(b) for a negative value of
canonical angular momentum (Pe<0). (The dotted circle is the electron
orbit in a plane perpendicular to the z-axis). The radial distance

of the electron from the z-axis at time t'=t and at t'=t' are denoted
by r and r', respectively. The point C is the gyrocenter of the
trajectory. The angular coordinates ¢ and ¢' are the perpendicular
velocity-space polar angles at times t'=t and t'=t', and are

related by
¢'=¢+(;C/Y)(t'-t) #

The transverse velocities at time t’=t and t’=t’ are denoted by y,
and xl, respectively, and the corresponding speeds are defined by

R i H12,

and vy=(v
The time integration in Eq. (15) can be carried out by making use
of the Bessel function summation theorem for the triangles OAB and

ABC in Fig. 3. After some straightforward but tedious algebra, the

perturbed TE mode distribution function can be expressed as

0 0 -
echl (JL. kpz) Bfe afe Js&’Onpllmchc)

w - + k =
B S Yo Yo 3H, p, Yw-swc-kpz/m

sE
£.(r,p) =
(18)
b ' &~ Py
g 'Z (0° exP[iS'(e—¢)]Js'(aOnr/Rc)Js+s'(mg:Rc) .

and the perturbed TM mode distribution function is given by




0 -~
3f_ J_(By py/mo R)

En(t, ymey —= 2 (i)s'+1
e T2k ap, yw—swc-kpz/m s'Z-a
(19)
BOnpl
xexp Hs'(9-¢)]Js'(80nr/Rc)Js+s. (;Erjy-),
cec

where use has been made of vé-vlsin(¢'~e')-(pllym)sin(¢'-6') and
p3=p3+p§ [For a detailed derivation of Eqs. (18) and (19), the steps are
similar to the derivation of Eqs. (38) and (39) in Ref. 8].

In obtaining Eqs. (18) and (19), we have neglected the mode coupling

? between different values of s, which is consistent with the inequality

: in Eq. (16). Contributions from the perturbed radial electric field
Er(r) have also been neglected in Eq. (19), which is valid provided

the group velocity of the vacuum waveguide mode is significantly

——

different from the beam velocity. [For TM mode perturbations,
however, it is shown in Sec. IV that the system is stable when
the group velocity of the waveguide mode is approximately equal to
the beam velocity. ]

The equilibrium electron distribution function in Eq. (3) can be ;

expressed as

Zas P ud
0 n0 N T % r -R0+rL
fe i = G(Px‘mﬂ‘wc)5(Pz'mec)0 (gin¢ e g
2mmr. w L
i L%

after some simple algebraic manipulation. In Eq. (20), $-¢-e.

(20)

Substituting Eqs. (18)-(20) into Eq. (11)-(14), and making use

of ;-yo(l—vilcz)-llz and Eq. (10), we obtain the dispersion relation
|
2
(93__ W2 - cl0n> 2 by (w-kvz)Qs(GOnRO/Rc’GOan/Rc)
c2 RZ ';RZJ (0. )2 w—sz-swc

c ¢c" 2" 0n 21
8 2 .22 2y 3 (21)

(w =k"¢c )Hs(aonRO/Rc, %onTL Rc)B*

2
(w-sz-swc)

for TE mode perturbations, and




S T — P T

11

2
2 80n

—-k - — =

4vR_(B Ro/R B0 ¥ /R) {w-sz

- xi ?,Rz 3,(8,) ’ il ~su,
(22)

(kc-szlc)2 ]
2

(m-sz—swc)

for TM mode perturbations. In Eqs. (21) and (22), Bl=rL&C/c, v=

Neez/mc2 is Budker's parameter, and the coupling coefficients

Hs, Qs’ and Ks are defined by
H, (x,y)=(1-y/3) 23, (xoy) 23] () 2423 (D TG,y
Q. (xs3)=2(L-3/%) 23, (x=y) 213 (1) 2493 (1) 3" ()]
s,}' y/X zxy Sy ys}'sy
(23)
#2023 (4y3Y (D ITE G +yI L (D TE_ (x,y)
R CRY) I8

R, (x,y)=(1=y/0) 23, o) 23 _() 43 (D Th(x,y)

where the prime (') denotes d/dy. The integrals Ii and 12 in Eq. (23)

are defined by

-
Xty %
Ig(x,y)= - f /21

du u Jl(u)fa d&sin&J [(u2+y2—2uysin$)l
¢ S

2mx° ! x~-y 0

xexp iscos_l{ Jy-using 1/2} »

(u2+y2—2uysin$)

N-oo

x+y - -
Ig(x,y) = —lf J du u Jo(u) J‘ d¢ Js[(u2+y2-2uysin¢)1/2]
™ T x-y ® . (24)
xexp :l.&zcos-1 3 g-usin¢ 172 ’
(u“+y“-2uysing)
where

: A

$g=sin (——-Y——zUy ) (25)

For the case of small thermal electron Larmor radius,

e g L e e e A o el




rL/R0<<1, (26)

the terms proportional to If and I? in Eq. (23) are negligible in

comparison with other terms. We, therefore, approximate Eq. (23) by

i
. o 2
| H (x,y)=J, () "I (y)" ,
i s e W
| Q_ (%,5)=23, (0 “ (3L (») H+yIL(NIT (N1, (27)
;

2 2

Ks(x,y) Jl(x) Js(y) .

For a specified value of Budker's parameter (v/;) and perpendicular

beam energy, it is evident from Eq. (27) that the coupling coefficient

between the vacuum waveguide mode and the electron cyclotron resonance

mode (w=kV +sw ) is a maximum when J)(a, R./R )=0 for the TE mode, and #
Zh e 2°0n 0' ¢

when Ji(BOnRO/Rc)=O for the TM mode. In this context, we conclude

that the maximum coupling for magnetic harmonic number s occurs for a

value of RO/Rc given by
u21/u0n . TE mode ,
Ry/R, = (28)

/8 T™ mode ,

%11""0n °

M = ' =
where @ and a,, are the first roots of J2(a21) 0 and Jl(all) o,

respectively. Note from Eq. (28) that the value of RO/Rc corresponding

to maximum coupling is the same for all magnetic harmonic numbers,

which is remarkably different from the results previously obtained8'9

for a hollow electron beam, where the maximum TE mode coupling coefficient

is proportional to Js(as As shown in Eq. (27), the maximum TE

1
mode coupling coefficient for a solid beam is proportional to J2 (021)2.
. Therefore, for purposes of producing intense microwave

radiation, it appears that a solid electron beam may be as effective

as a hollow beam. In the following section, the dispersion relations




in Eqs. (21) and (22) are solved numerically for the case of small

thermal Larmor radius, with rL/Ro<<1.

- —— e - - -
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IV. STABILITY ANALYSIS
In this section, the linear dispersion relations in Eqs. (21)
and (22) are solved numerically for r_<<R.. For the TE mode dispersion

L 0

relation [Eq. (21)], we assume that the group velocity of the vacuum

waveguide mode is approximately equal to the beam velocity,8 i.e.,
V = — =V ., (29)

Making use of the TE vacuum waveguide mode dispersion relationm,
mz/ A 2 2 /R , the cyclotron resonance condition, w=kV +w o’ and Eq.

(29), we obtain the lowest-order solution
- 2
) stwc ’
k =y28 sw /¢ (30)
0 'z°z ¢ "

Rc-GOnCIstwc 2

for microwave generation at frequency w=y§swc. Here y:-(l-ai)-
| and sz-Vz/c. Substituting Eq. (30) into Eq. (21) and iterating, we

obtain the approximate TE mode dispersion relation

2
} 3_12 2,2
ks [—'s—«ﬁ] [Qg (x,y)Z4=sY, 8,8, (x,y) 1=0 (31)
Y On 2

where the normalized Doppler-shifted eigenfrequency Zs is defined

by Zs-(w-kﬁfswc)/wc, Qs and Hs are defined in Eq. (27), and x=a, RO/R
and y-uoan/Rc-yszL. Since the electron beam is assumed to satisfy
R0>2rL (see Sec. II), the allowable range of ROIRC is restricted to

RO/Rc>2Yz’B*/°0n’ where use has been made of Eq. (29). [Therefore,

in Fig. 4 the growth rate plots are presented only for values of

‘ RO/Rc>27z881/°0n‘]
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Shown in Fig. 4 are plots of normalized growth rate Imm/wc-wi/wc
versus RO/Rc obtained from Eq. (31) (TE mode) for v=0.001, B,=0.4,
82-0.3, and several values of (s,n). Several features are noteworthy
from Fig. 4. First, the maximum growth rate for each set of (s,n)
occurs at the value of RO/Rc given by RO/Rc-aZI/uon. Second, the general
shape of the growth rate curve is similar in form to that obtained for
s=2 perturbations about a hollow electron beam. [See Fig. 7 of Ref.

8.] Third, the maximum growth rate for the solid beam configuration

* considered here is comparable to the maximum growth rate for a hollow
beam.8 In this context, we conclude that the cyclotron maser instability
in a solid beam may also be an effective means for generating intense
microwave radiation.

’_ We now investigate a typical example that illustrates the dependence
of ™ mode stability behavior on k. Figure 5 shows a plot of normalized

growth rate Imm/wc-wilwc versus normalized axial wavenumber kc/mc

| obtained from Eqs. (22) and (27) for v=0.001, RO/RC-O.S, rL/RC-O.l,

82-0.3, n=2 and several values of s. It is evident from Fig. 5 and

' Eq. (22) that the growth rate vanishes at k-ko-yiszsmc/c, which is

l identical to the condition in Eq. (29). We therefore conclude

f that the system is completely stable to TM mode perturbations when

E the group velocity of the vacuum waveguide mode is equal to the

E beam velocity. This appears to be a unique property of the equilibrium
| distribution function in Eq. (3), where all electrons have the same

! _ axial velocity. It is important to note, however, that the TM mode

growth rate can be substantial for axial wavenumbers different from

2
yzszsmc/c.
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V. SUMMARY AND CONCLUSIONS

In this paper, we have examined the cyclotron maser instability
for an intense solid electron beam propagating parallel to a uniform
axial guide field. The analysis was carried out within the framework
of the linearized Vlasov-Maxwell equations. The equilibrium
(Sec. II) and cyclotron maser stability (Secs. III and IV)
properties were investigated in detail for the choice of distribution
function in which all electrons have the same value of perpendicular
energy, the same value of axial velocity, and a step-function distribu-
tion in canonical angular momentum. One of the most important
conclusions of this study is that the maximum instability growth rate
for a solid electron beam is comparable to that of a hollow beam.
Moreover, it is also found that the maximum growth rate for magnetic
harmonic number s occurs at a value of RO/Rc corresponding to RO/RC-

/a. for TE mode perturbations, and RO/RC-all/BOn for T mode

®21/%n
perturbations. For the TM mode, however, the growth rate vanishes
when the group velocity of the vacuum waveguide mode is equal to the

beam velocity. 1In this context, the TE mode is more effective at

producing intense microwave radiation in a solid beam than the TM mode.
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FIGURE CAPTIONS

Equilibrium configuration and coordinate system.

Electron density profile [Eq. (9)].

Electron orbit for (a) Pa>0, and (b) Pe<0 projected on a
plane perpendicular to the z-axis.

Plots of normalized TE mode growth rate wi/mc versus RO/Rc
[Eq. (31)] for v=0.001, B,=0.4, 82-0.3, and several values
of (s,n).

Plots of normalized TM mode growth rate wi/mc versus kc/mc

[Eq. (22)] for v=0.001, n=2, 82-0.3, RO/RC-O.S, rL/Rc-O.l,

and several values of s.
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Fig. 3b
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